Quantifying Contextuality

Shane Mansfield*

*Joint work with Samson Abramsky and Rui Soares Barbosa, Oxford University Department of Computer Science

QuPa, IHP, 7th July 2016
Overview

- Unified, general framework for non-locality and contextuality
- Qualitative hierarchy of contextuality
- Quantitative *measure of contextuality*
Overview

- Unified, general framework for non-locality and contextuality
- Qualitative hierarchy of contextuality
- Quantitative *measure of contextuality*

Why?
Overview

• Unified, general framework for non-locality and contextuality
• Qualitative hierarchy of contextuality
• **Quantitative measure of contextuality**

Why?

• Compare degree of contextuality of empirical models
• . . . across different measurement scenarios
• Contextuality as a resource
Contextuality
Empirical Data (e.g. CHSH)

<table>
<thead>
<tr>
<th>(a, b)</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Diagram

- $o_A \in \{0, 1\}$
- $o_B \in \{0, 1\}$
- $m_A \in \{a, a'\}$
- $m_B \in \{b, b'\}$
- p
Measurement Scenarios: CHSH

<table>
<thead>
<tr>
<th>(a, b)</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

A measurement scenario is a triple \(\langle X, M, O \rangle \) where:
Measurement Scenarios: CHSH

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>((a, b'))</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>((a', b))</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>((a', b'))</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
</tr>
</tbody>
</table>

A *measurement scenario* is a triple \(\langle X, \mathcal{M}, O \rangle\) where:

- **\(X\)** a finite set of measurements — e.g.

\[
X = \{a, a', b, b'\}
\]
A measurement scenario is a triple $\langle X, M, O \rangle$ where:

X a finite set of measurements — e.g.

$$X = \{a, a', b, b'\}$$

M the (maximal) contexts — e.g.

$$M = \{\{a, b\}, \{a, b'\}, \{a', b\}, \{a', b'\}\}$$
A measurement scenario is a triple \(\langle X, \mathcal{M}, O \rangle \) where:

- \(X \) a finite set of measurements — e.g.
 \[
 X = \{a, a', b, b'\}
 \]

- \(\mathcal{M} \) the (maximal) contexts — e.g.
 \[
 \mathcal{M} = \{\{a, b\}, \{a, b'\}, \{a', b\}, \{a', b'\}\}
 \]

- \(O \) a finite set — e.g.
 \[
 O = \{0, 1\}
 \]
Measurement Scenarios: ‘Triangle’

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>((b, c))</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>((c, a))</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
</tbody>
</table>
Measurement Scenarios: ‘Triangle’

<table>
<thead>
<tr>
<th></th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>(b,c)</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>(c,a)</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Measurements:

\[X = \{a, b, c\} \]

Contexts:

\[\mathcal{M} = \{\{a, b\}, \{b, c\}, \{c, a\}\} \]

Outcomes:

\[O = \{0, 1\} \]
Measurement Scenarios: ‘Triangle’

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>(b, c)</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>(c, a)</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Measurements:

\[X = \{a, b, c\} \]

Contexts:

\[\mathcal{M} = \{\{a, b\}, \{b, c\}, \{c, a\}\} \]

Outcomes:

\[O = \{0, 1\} \]
Measurement Scenarios: 18-vector KS

- A set of 18 variables: $X = \{A, \ldots, O\}$
- A set of outcomes: $O = \{0, 1\}$
- A measurement cover: $\mathcal{M} = \{C_1, \ldots, C_9\}$
 whose contexts C_i correspond to the columns in the following table:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
<td>C_4</td>
<td>C_5</td>
<td>C_6</td>
<td>C_7</td>
<td>C_8</td>
<td>C_9</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td>I</td>
<td>P</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>I</td>
<td>K</td>
<td>E</td>
<td>K</td>
<td>Q</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>C</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>D</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>J</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>J</td>
<td>L</td>
<td>O</td>
</tr>
</tbody>
</table>
Empirical Models

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

- Fix a measurement scenario \(\langle X, M, O \rangle \)
Fix a measurement scenario $\langle X, M, O \rangle$

Empirical model: family $\{e_C\}_{C \in M}$ where each $e_C \in \text{Prob}(O^C)$
Empirical Models

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(a, b')</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>(a', b)</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>(a', b')</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
</tr>
</tbody>
</table>

- Fix a measurement scenario \(\langle X, M, O \rangle\)

- **Empirical model**: family \(\{e_C\}_{C \in M}\) where each \(e_C \in \text{Prob}(O^C)\)

- Distribution for each context:
 \[
e_{\{a,b\}} = \text{prob}(o_1, o_2 | a, b), \ldots, e_{\{a',b'\}} = \text{prob}(o_1, o_2 | a', b')
 \]
Empirical Models

<table>
<thead>
<tr>
<th></th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a,b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a',b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a',b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

- Fix a measurement scenario \(\langle X, M, O \rangle \)

- **Empirical model**: family \(\{e_C\}_{C \in M} \) where each \(e_C \in \text{Prob}(O^C) \)

- Distribution for each context:
 \[
e_{\{a,b\}} = \text{prob}(o_1, o_2 | a, b), \ldots, e_{\{a',b'\}} = \text{prob}(o_1, o_2 | a', b')
 \]

- ‘Local’ consistency:
 \[
 \text{prob}(o_1 | a, b) = \text{prob}(o_1 | a, b') = \text{prob}(o_1 | a), \text{ etc.}
 \]
Empirical Models

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

- Fix a measurement scenario \(\langle X, M, O \rangle\)

- *Empirical model:* family \(\{e_C\}_{C \in \mathcal{M}}\) where each \(e_C \in \text{Prob}(O^C)\)

- Distribution for each context:
 \[
 e_{\{a, b\}} = \text{prob}(o_1, o_2 | a, b), \ldots, \quad e_{\{a', b'\}} = \text{prob}(o_1, o_2 | a', b')
 \]

- ‘Local’ consistency:
 \[
 \text{prob}(o_1 | a, b) = \text{prob}(o_1 | a, b') = \text{prob}(o_1 | a), \text{ etc.}
 \]
Contextuality

Classical data should arise as a convex combination of *global assignments*:

\[(a, a', b, b') \mapsto (0, 0, 0, 0), (a, a', b, b') \mapsto (0, 0, 0, 1), \ldots, (a, a', b, b') \mapsto (1, 1, 1, 1)\]

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>((a, b'))</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>((a', b))</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>((a', b'))</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

\[0 \quad 1 \quad b' \quad a' \quad a \quad b\]
Contextuality

Classical data should arise as a convex combination of \textit{global assignments}:

$$(a, a', b, b') \mapsto (0, 0, 0, 0), \quad (a, a', b, b') \mapsto (0, 0, 0, 1), \quad \ldots, \quad (a, a', b, b') \mapsto (1, 1, 1, 1)$$

<table>
<thead>
<tr>
<th></th>
<th>$(0, 0)$</th>
<th>$(0, 1)$</th>
<th>$(1, 0)$</th>
<th>$(1, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a, b')</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a', b)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Contextuality

Classical data should arise as a convex combination of \textit{global assignments}:

\[(a, a', b, b') \mapsto (0, 0, 0, 0), \ (a, a', b, b') \mapsto (0, 0, 0, 1), \ldots, \ (a, a', b, b') \mapsto (1, 1, 1, 1)\]

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((a, b'))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a', b)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a', b')</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Contextuality

Classical data should arise as a convex combination of **global assignments**:

\[(a, a', b, b') \mapsto (0, 0, 0, 0), \quad (a, a', b, b') \mapsto (0, 0, 0, 1), \quad \ldots, \quad (a, a', b, b') \mapsto (1, 1, 1, 1)\]

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(a, b')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(a', b)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(a', b')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Contextuality

Classical data should arise as a convex combination of global assignments:

\[(a, a', b, b') \mapsto (0, 0, 0, 0), (a, a', b, b') \mapsto (0, 0, 0, 1), \ldots, (a, a', b, b') \mapsto (1, 1, 1, 1)\]

Contextuality is present if such a decomposition is not possible
Contextuality

Classical data should arise as a convex combination of global assignments:

\[(a, a', b, b') \mapsto (0, 0, 0, 0), (a, a', b, b') \mapsto (0, 0, 0, 1), \ldots, (a, a', b, b') \mapsto (1, 1, 1, 1)\]

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(a, b')</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>(a', b)</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>(a', b')</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
</tr>
</tbody>
</table>

Contextuality is present if such a decomposition is *not* possible

(Contextuality rules out deterministic HVs; non-locality is a special case)
Strong Contextuality

Strong Contextuality:

no event can be extended to a global assignment.
Strong Contextuality:

no event can be extended to a global assignment.

E.g. K–S models, GHZ, the PR box:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Strong Contextuality:

no event can be extended to a global assignment.

E.g. K–S models, GHZ, the PR box:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Contextuality as a Linear System
Contextuality as a Linear System

- Flatten e to a vector $v_e \in \mathbb{R}^m$, e.g.

 $$v_e = \{\frac{1}{2}, 0, 0, \frac{1}{2}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\}$$
Contextuality as a Linear System

- Flatten e to a vector $v_e \in \mathbb{R}^m$, e.g.

$$v_e = \{1/2, 0, 0, 1/2, \quad 3/8, 1/8, 1/8, 3/8, \quad 3/8, 1/8, 1/8, 3/8, \quad 1/8, 3/8, 3/8, 1/8\}$$

- Similarly for global assignments, e.g.

$$g_1 = \{1, 0, 0, 0, \quad 1, 0, 0, 0, \quad 1, 0, 0, 0, \quad 1, 0, 0, 0\}$$
Contextuality as a Linear System

- Flatten e to a vector $v_e \in \mathbb{R}^m$, e.g.

 $$v_e = \{1/2, 0, 0, 1/2, 3/8, 1/8, 1/8, 3/8, 3/8, 1/8, 3/8, 3/8, 1/8\}$$

- Similarly for global assignments, e.g.

 $$g_1 = \{1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0\}$$

- Define $M := [g_1, \ldots, g_n]$ with global assignments as columns
Contextuality as a Linear System

- Flatten e to a vector $v_e \in \mathbb{R}^m$, e.g.
 \[
 v_e = \{1/2, 0, 0, 1/2, \ 3/8, 1/8, 1/8, 3/8, \ 3/8, 1/8, 1/8, 3/8, \ 1/8, 3/8, 3/8, 1/8\}
 \]

- Similarly for global assignments, e.g.
 \[
 g_1 = \{1, 0, 0, 0, \ 1, 0, 0, 0, \ 1, 0, 0, 0, \ 1, 0, 0, 0\}
 \]

- Define $M := [g_1, \ldots, g_n]$ with global assignments as columns

- e is non-contextual iff there exists a solution $d \in \mathbb{R}^m$ with $d \geq 0$ to
 \[
 Md = v_e
 \]
The Contextual Fraction
The Contextual Fraction

Proposition

Every empirical model admits a convex decomposition

\[e = \lambda e^{NC} + (1 - \lambda)e^{SC} \]

into a non-contextual and a strongly contextual model
The Contextual Fraction

Proposition

Every empirical model admits a convex decomposition

\[e = \lambda e^{NC} + (1 - \lambda) e^{SC} \]

into a non-contextual and a strongly contextual model

Non-contextual fraction:
maximum value \(\lambda \) for such decompositions, denoted \(NC(e) \)
The Contextual Fraction

Proposition

Every empirical model admits a convex decomposition

\[e = \lambda e^\text{NC} + (1 - \lambda) e^\text{SC} \]

into a non-contextual and a strongly contextual model

Non-contextual fraction:

maximum value \(\lambda \) for such decompositions, denoted \(\text{NC}(e) \)

Contextual fraction: \(\text{CF}(e) = 1 - \text{NC}(e) \)
The Contextual Fraction

Proposition

Every empirical model admits a convex decomposition

\[e = \lambda e^{\text{NC}} + (1 - \lambda) e^{\text{SC}} \]

into a non-contextual and a strongly contextual model

Non-contextual fraction:

maximum value \(\lambda \) for such decompositions, denoted NC\((e) \)

Contextual fraction: \(\text{CF}(e) = 1 - \text{NC}(e) \)

- \(\text{CF}(e) \in [0, 1] \)
- \(e \) is non-contextual iff \(\text{CF}(e) = 0 \)
- \(e \) is strongly contextual iff \(\text{CF}(e) = 1 \)
(Non-)Contextual Fraction via Linear Programming

Checking contextuality of e corresponds to solving

Find $d \in \mathbb{R}^n$

such that $M d = v_e$

and $d \geq 0$
Checking contextuality of e corresponds to solving

Find $d \in \mathbb{R}^n$ such that $M d = v_e$ and $d \geq 0$

Computing the non-contextual fraction corresponds to solving the following linear program:

Find $c \in \mathbb{R}^n$ maximising $1 \cdot c$ subject to $M c \leq v_e$ and $c \geq 0$
Bell Inequality Violations
An inequality for a scenario $\langle X, M, O \rangle$ is given by:

- A set of coefficients $\alpha = \{\alpha(C,s)\}_{C \in M, s \in O}$
- A bound R

For a model e, $B_\alpha(e) \leq R$, where $B_\alpha(e) = \sum_{C \in M, s \in E(C)} \alpha(C,s) e_{C}(s)$.

Wlog we can take R non-negative (in fact, we can take $R = 0$).

- Bell inequality if it is satisfied by every NC model
- Bell inequality is tight if it is saturated by some NC model
Generalised Bell Inequalities

An inequality for a scenario \(\langle X, \mathcal{M}, O \rangle \) is given by:

- A set of coefficients \(\alpha = \{ \alpha_{(C,s)} \}_{C \in \mathcal{M}, s \in O} \)
- A bound \(R \)
- For a model \(e \),

\[
\mathcal{B}_\alpha(e) \leq R,
\]

where

\[
\mathcal{B}_\alpha(e) := \sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha_{(C,s)} e_C(s)
\]
Generalised Bell Inequalities

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- A set of coefficients $\alpha = \{\alpha_{(C,s)}\}_{C \in \mathcal{M}, s \in O}$
- A bound R

For a model e,

$$B_{\alpha}(e) \leq R,$$

where

$$B_{\alpha}(e) := \sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha_{(C,s)} e_C(s)$$

Wlog we can take R non-negative (in fact, we can take $R = 0$)
An *inequality* for a scenario $\langle X, M, O \rangle$ is given by:

- A vector $\alpha \in \mathbb{R}^m$
- A bound R

- For a model e,

 \[\alpha \cdot v_e \leq R , \]

 where

 \[\alpha \cdot v_e := \sum_{C \in M, s \in \mathcal{E}(C)} \alpha_{(C,s)} e_C(s) \]

 Wlog we can take R *non-negative (in fact, we can take* $R = 0$)
An inequality for a scenario $\langle X, M, O \rangle$ is given by:

- A vector $\alpha \in \mathbb{R}^m$
- A bound R

For a model e,

$$\alpha \cdot v_e \leq R,$$

where

$$\alpha \cdot v_e := \sum_{C \in M, s \in \mathcal{E}(C)} \alpha_{(C,s)} e_C(s)$$

Wlog we can take R non-negative (in fact, we can take $R = 0$)

- **Bell inequality** if it is satisfied by every NC model
- Bell inequality is **tight** if it is saturated by some NC model
Violation of a Bell inequality

- Bell inequality \rightarrow a bound for $B_\alpha(e)$ amongst NC models
Violation of a Bell inequality

- Bell inequality \rightarrow a bound for $\mathcal{B}_\alpha(e)$ amongst NC models

- For general (no-signalling) models, $\mathcal{B}_\alpha(e)$ is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \{ \alpha(C, s) \mid s \in O^C \}$$
Violation of a Bell inequality

• Bell inequality → a bound for $\mathcal{B}_\alpha(e)$ amongst NC models

• For general (no-signalling) models, $\mathcal{B}_\alpha(e)$ is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \{ \alpha(C,s) \mid s \in O^C \}$$

• The **normalised violation** of a Bell inequality $\langle \alpha, R \rangle$ by e is

$$\frac{\max\{0, \mathcal{B}_\alpha(e) - R\}}{\|\alpha\| - R} \in [0, 1]$$
Proposition

Let e be an empirical model

- Normalised violation by e of any Bell inequality is at most $\text{CF}(e)$

- There exists a Bell inequality for which this is attained

- This Bell inequality is tight at “the” non-contextual model e^{NC}

$$e = \text{NC}(e) e^{NC} + \text{CF}(e) e^{SC}$$
Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find $c \in \mathbb{R}^n$

maximising $1 \cdot c$

subject to $Mc \leq v_e$

and $c \geq 0$

\[e = NC(e)e^{NC} + CF(e)e^{SC} \]
Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)

maximising \(1 \cdot c \)

subject to \(M c \leq v_e \)

and \(c \geq 0 \)

\(e = NC(e) e^{NC} + CF(e) e^{SC} \)
Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find $\mathbf{c} \in \mathbb{R}^n$
maximising $\mathbf{1} \cdot \mathbf{c}$
subject to $\mathbf{M} \mathbf{c} \leq \mathbf{v}_e$
and $\mathbf{c} \geq 0$

$e = \text{NC}(e) e^{NC} + \text{CF}(e) e^{SC}$

Dual LP:

Find $\mathbf{y} \in \mathbb{R}^m$
minimising $\mathbf{y} \cdot \mathbf{v}_e$
subject to $\mathbf{M}^T \mathbf{y} \geq 1$
and $\mathbf{y} \geq 0$

$\alpha = 1 - |\mathbf{M}|$

$\mathbf{M}^T \mathbf{\alpha} \leq 0$
and $\mathbf{\alpha} \leq 1$

computes tight Bell inequality (separating hyperplane)
Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find $c \in \mathbb{R}^n$

maximising $1 \cdot c$

subject to $M c \leq v_e$

and $c \geq 0$

$$e = NC(e) e^{NC} + CF(e) e^{SC}$$

Dual LP:

Find $y \in \mathbb{R}^m$

minimising $y \cdot v_e$

subject to $M^T y \geq 1$

and $y \geq 0$

$$\alpha := 1 - |M|y$$
Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)

maximising \(1 \cdot c \)

subject to \(M c \leq v_e \)

and \(c \geq 0 \)

e = NC(e) e^{NC} + CF(e) e^{SC}

Dual LP:

Find \(y \in \mathbb{R}^m \)

minimising \(y \cdot v_e \)

subject to \(M^T y \geq 1 \)

and \(y \geq 0 \)

\(\alpha := 1 - |M|y \)

Find \(\alpha \in \mathbb{R}^m \)

maximising \(\alpha \cdot v_e \)

subject to \(M^T \alpha \leq 0 \)

and \(\alpha \leq 1 \)
Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)

maximising \(1 \cdot c \)

subject to \(M c \leq v_e \)

and \(c \geq 0 \)

\[e = NC(e)e^{NC} + CF(e)e^{SC} \]

Dual LP:

Find \(y \in \mathbb{R}^m \)

minimising \(y \cdot v_e \)

subject to \(M^T y \geq 1 \)

and \(y \geq 0 \)

\[\alpha := 1 - |M|y \]

Find \(\alpha \in \mathbb{R}^m \)

maximising \(\alpha \cdot v_e \)

subject to \(M^T \alpha \leq 0 \)

and \(\alpha \leq 1 \)

computes tight Bell inequality (separating hyperplane)
Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find $c \in \mathbb{R}^n$
maximising $1 \cdot c$
subject to $Mc \leq v_e$
and $c \geq 0$

$$e = NC(e)e^{NC} + CF(e)e^{SC}$$

Dual LP:

Find $y \in \mathbb{R}^m$
minimising $y \cdot v_e$
subject to $M^T y \geq 1$
and $y \geq 0$

$$\alpha := 1 - |M|y$$

Find $\alpha \in \mathbb{R}^m$
maximising $\alpha \cdot v_e$
subject to $M^T \alpha \leq 0$
and $\alpha \leq 1$

computes tight Bell inequality (separating hyperplane)
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality, 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

What else?
- Computational tools (Mathematica package) implementing all this
- Resource Theory: Monotonicity properties wrt operations that don't introduce contextuality
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- \(0 \) for non-contextuality, \(1 \) for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Computational tools (Mathematica package) implementing all this
- Resource Theory: Monotonicity properties wrt operations that don't introduce contextuality
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Computational tools (Mathematica package) implementing all this
- Resource Theory: Monotonicity properties wrt operations that don't introduce contextuality
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Computational tools (Mathematica package) implementing all this
- Resource Theory: Monotonicity properties wrt operations that don't introduce contextuality
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality . . . 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality . . . 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

What else?
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality \ldots 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

What else?

- Computational tools (*Mathematica* package) implementing all this
Contextual Fraction (Recap)

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality . . . 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

What else?

- Computational tools (Mathematica package) implementing all this

- **Resource Theory**: Monotonicity properties wrt operations that don’t introduce contextuality
Computational Explorations
Computational Explorations

Computational tools (*Mathematica* package) to:

1. Calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements
2. Calculate the incidence matrix for any measurement scenario
3. Quantify the degree of contextuality of any empirical model using the LP method
4. Find the Bell inequality using the dual LP
Computational Explorations

Computational tools (*Mathematica* package) to:

1. Calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements
Computational Explorations

Computational tools (*Mathematica* package) to:

1. Calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements

2. Calculate the incidence matrix for any measurement scenario
Computational Explorations

Computational tools (*Mathematica* package) to:

1. Calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements

2. Calculate the incidence matrix for any measurement scenario

3. Quantify the degree of contextuality of any empirical model using the LP method
Computational Explorations

Computational tools (*Mathematica* package) to:

1. Calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements

2. Calculate the incidence matrix for any measurement scenario

3. Quantify the degree of contextuality of any empirical model using the LP method

4. Find the Bell inequality using the dual LP
1. Equatorial measurements on $|\phi^+\rangle$

- two-qubit Bell state $|\phi^+\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$
1. Equatorial measurements on $|\phi^+\rangle$

- two-qubit Bell state $|\phi^+\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$

- Equatorial measurements at angles (ϕ_1, ϕ_2)
1. Equatorial measurements on $|\phi^+\rangle$

- two-qubit Bell state $|\phi^+\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$

- Equatorial measurements at angles (ϕ_1, ϕ_2)

- e.g. $(\phi_1, \phi_2) = (0, \pi/3)$ gives Bell–CHSH model

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>$1/2$</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$3/8$</td>
<td>$1/8$</td>
<td>$1/8$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$3/8$</td>
<td>$1/8$</td>
<td>$1/8$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$1/8$</td>
<td>$3/8$</td>
<td>$3/8$</td>
<td>$1/8$</td>
</tr>
</tbody>
</table>

\[\theta = \frac{\pi}{2} \]
1. Equatorial measurements on $|\phi^+\rangle$

Plot $NC(e)$ against measurement angles (ϕ_1, ϕ_2)
1. Equatorial measurements on $|\phi^+\rangle$

Plot $NC(e)$ against measurement angles (ϕ_1, ϕ_2)

Minima (maximum contextuality since $CF(e) = 1 - NC(e)$):

$$\{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{8}, \frac{5\pi}{8} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}$$
1. Equatorial measurements on $|\phi^+\rangle$

Minima (maximum contextuality since $\text{CF}(e) = 1 - \text{NC}(e)$):

$$\{\phi_1, \phi_2\} \subset \left\{ \left\{ \frac{\pi}{8}, \frac{5\pi}{8} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}$$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>p</td>
<td>$(1/2 - p)$</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
<td></td>
</tr>
</tbody>
</table>

$$p = \frac{\sqrt{2} + 2}{8}$$
1. Equatorial measurements on $|\phi^+\rangle$

Minima (maximum contextuality since $\text{CF}(e) = 1 - \text{NC}(e)$):

$$\{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{8}, \frac{5\pi}{8} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>p</td>
<td>$(1/2 - p)$</td>
<td>$(1/2 - p)$</td>
<td>p</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
</tr>
</tbody>
</table>

$$p = \frac{\sqrt{2} + 2}{8}$$

Note that these achieve Tsirelson violation of the CHSH inequality.
2. Equatorial measurements on GHZ(n)

Figure: NC(e) for equatorial measurements at ϕ_1 and ϕ_2 on each qubit of $|\psi_{GHZ(n)}\rangle$ with: (a) $n = 3$; (b) $n = 4$.
Towards a resource theory of contextuality
Contextuality as a resource

- May be more than one useful measure of contextuality
- What properties should a good measure satisfy?
Contextuality as a resource

- May be more than one useful measure of contextuality
- What properties should a good measure satisfy?
- Monotone wrt operations that do not introduce contextuality
Contextuality as a resource

- May be more than one useful measure of contextuality
- What properties should a good measure satisfy?
- Monotone wrt operations that do not introduce contextuality
- Towards a resource theory, as for entanglement (e.g. LOCC), non-locality, . . .
Contextuality as a resource

- May be more than one useful measure of contextuality

- What properties should a good measure satisfy?

- Monotone wrt operations that do not introduce contextuality

- Towards a resource theory, as for entanglement (e.g. LOCC), non-locality, ...

- Algebra of empirical models, towards a process calculus?
Operations

- **relabelling**
 \[e : \langle X, \mathcal{M}, O \rangle, \; \alpha : (X, \mathcal{M}) \cong (X', \mathcal{M}') \rightsquigarrow e[\alpha] : \langle X', \mathcal{M}', O \rangle \]

 For \(C \in \mathcal{M}, s : \alpha(C) \rightarrow O \), \(e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1}) \)
Operations

• relabelling

 \(e : \langle X, \mathcal{M}, O \rangle, \ \alpha : (X, \mathcal{M}) \cong (X', \mathcal{M}') \leadsto e[\alpha] : \langle X', \mathcal{M}', O \rangle \)

 For \(C \in \mathcal{M}, s : \alpha(C) \rightarrow O \), \(e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1}) \)

• restriction

 \(e : \langle X, \mathcal{M}, O \rangle, (X', \mathcal{M}') \leq (X, \mathcal{M}) \leadsto e \restriction \mathcal{M}' : \langle X', \mathcal{M}', O \rangle \)

 For \(C' \in \mathcal{M}', s : C' \rightarrow O \), \((e \restriction \mathcal{M}')_{C'}(s) := e_C|_{C'}(s) \)

 with any \(C \in \mathcal{M} \) s.t. \(C' \subseteq C \)
Operations

- **relabelling**
 \[e : \langle X, M, O \rangle, \ \alpha : (X, M) \cong (X', M') \leadsto e[\alpha] : \langle X', M', O \rangle \]

 For \(C \in M, s : \alpha(C) \rightarrow O, e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1}) \)

- **restriction**
 \[e : \langle X, M, O \rangle, (X', M') \leq (X, M) \leadsto e \upharpoonright M' : \langle X', M', O \rangle \]

 For \(C' \in M', s : C' \rightarrow O, (e \upharpoonright M')_{C'}(s) := e_{C'|C'}(s) \)

 with any \(C \in M \) s.t. \(C' \subseteq C \)

- **coarse-graining**
 \[e : \langle X, M, O \rangle, f : O \rightarrow O' \leadsto e/f : \langle X, M, O' \rangle \]

 For \(C \in M, s : C \rightarrow O', (e/f)_C(s) := \sum_t : C \rightarrow O, f \circ t = s \ e_C(t) \)
Operations

- **mixing**

 \[e : \langle X, \mathcal{M}, O \rangle, \quad e' : \langle X, \mathcal{M}, O \rangle, \quad \lambda \in [0, 1] \quad \leadsto \quad e + \lambda e' : \langle X, \mathcal{M}, O \rangle \]

 For \(C \in \mathcal{M} \), \(s : C \rightarrow O' \),

 \[
 (e + \lambda e')_C(s) := \lambda e_C(s) + (1 - \lambda) e'_C(s)
 \]
Operations

- **mixing**
 \[e : \langle X, M, O \rangle, \ e' : \langle X, M, O \rangle, \lambda \in [0, 1] \leadsto e + \lambda e' : \langle X, M, O \rangle \]

 \[
 \text{For } C \in M, s: C \rightarrow O', \quad (e + \lambda e')_C(s) := \lambda e_C(s) + (1 - \lambda)e'_C(s)
 \]

- **choice**
 \[e : \langle X, M, O \rangle, \ e' : \langle X', M', O \rangle \leadsto e\&e' : \langle X \sqcup X', M \sqcup M', O \rangle \]

 \[
 \text{For } C \in M, (e\&e')_C := e_C \\
 \text{For } D \in M', (e\&e')_D := e'_D
 \]

\[23 / 26 \]
Operations

- **mixing**
 \[e : \langle X, \mathcal{M}, O \rangle, \ e' : \langle X, \mathcal{M}, O \rangle, \lambda \in [0, 1] \rightsquigarrow e + \lambda \ e' : \langle X, \mathcal{M}, O \rangle \]

 For \(C \in \mathcal{M}, s : C \rightarrow O' \),
 \[(e + \lambda \ e')_C(s) := \lambda e_C(s) + (1 - \lambda) e'_C(s) \]

- **choice**
 \[e : \langle X, \mathcal{M}, O \rangle, \ e' : \langle X', \mathcal{M}', O \rangle \rightsquigarrow e \& e' : \langle X \sqcup X', \mathcal{M} \sqcup \mathcal{M}', O \rangle \]

 For \(C \in \mathcal{M}, (e \& e')_C := e_C \)
 For \(D \in \mathcal{M}', (e \& e')_D := e'_D \)

- **tensor**
 \[e : \langle X, \mathcal{M}, O \rangle, \ e' : \langle X', \mathcal{M}', O \rangle \rightsquigarrow e \otimes e' : \langle X \sqcup X', \mathcal{M} \star \mathcal{M}', O \rangle \]

 \[\mathcal{M} \star \mathcal{M}' := \{ C \sqcup D \mid C \in \mathcal{M}, D \in \mathcal{M}' \} \]
 For \(C \in \mathcal{M}, D \in \mathcal{M}', s = \langle s_1, s_2 \rangle : C \sqcup D \rightarrow O, \)
 \[(e \otimes e')_{C \sqcup D}(s_1, s_2) := e_C(s_1) e'_D(s_2) \]
Operations and the Contextual Fraction

• relabelling
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

• restriction
 \[\text{CF}(e \upharpoonright \sigma') \leq \text{CF}(e) \]

• coarse-graining
 \[\text{CF}(e/f) \leq \text{CF}(e) \]

• mixing
 \[\text{CF}(e + \lambda e') \leq \lambda \text{CF}(e) + (1 - \lambda) \text{CF}(e') \]

• choice
 \[\text{CF}(e & e') = \max\{\text{CF}(e), \text{CF}(e')\} \]

\[\text{NCF}(e & e') = \min\{\text{NCF}(e), \text{NCF}(e')\} \]

• tensor
 \[\text{CF}(e_1 \otimes e_2) = \text{CF}(e_1) + \text{CF}(e_2) - \text{CF}(e_1) \text{CF}(e_2) \]

\[\text{NCF}(e_1 \otimes e_2) = \text{NCF}(e_1) \text{NCF}(e_2) \]
Operations and the Contextual Fraction

- **relabelling**
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]
Operations and the Contextual Fraction

- **relabelling**
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

- **restriction**
 \[\text{CF}(e \upharpoonright \sigma') \leq \text{CF}(e) \]
Operations and the Contextual Fraction

- **relabelling**
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

- **restriction**
 \[\text{CF}(e \upharpoonright \sigma') \leq \text{CF}(e) \]

- **coarse-graining**
 \[\text{CF}(e/f) \leq \text{CF}(e) \]
Operations and the Contextual Fraction

- **relabelling**
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

- **restriction**
 \[\text{CF}(e \upharpoonright \sigma') \leq \text{CF}(e) \]

- **coarse-graining**
 \[\text{CF}(e/f) \leq \text{CF}(e) \]

- **mixing**
 \[\text{CF}(e + \lambda e') \leq \lambda \text{CF}(e) + (1 - \lambda) \text{CF}(e') \]

- **choice**
 \[\text{CF}(e \& e') = \max \{ \text{CF}(e), \text{CF}(e') \} \]
 \[\text{NCF}(e \& e') = \min \{ \text{NCF}(e), \text{NCF}(e') \} \]
Operations and the Contextual Fraction

- **relabelling**
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

- **restriction**
 \[\text{CF}(e \upharpoonright \sigma') \leq \text{CF}(e) \]

- **coarse-graining**
 \[\text{CF}(e/f) \leq \text{CF}(e) \]

- **mixing**
 \[\text{CF}(e + \lambda e') \leq \lambda \text{CF}(e) + (1 - \lambda) \text{CF}(e') \]

- **choice**
 \[\text{CF}(e \& e') = \max\{ \text{CF}(e), \text{CF}(e') \} \]
 \[\text{NCF}(e \& e') = \min\{ \text{NCF}(e), \text{NCF}(e') \} \]
Operations and the Contextual Fraction

- **relabelling**
 \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

- **restriction**
 \[\text{CF}(e \upharpoonright \sigma') \leq \text{CF}(e) \]

- **coarse-graining**
 \[\text{CF}(e/f) \leq \text{CF}(e) \]

- **mixing**
 \[\text{CF}(e + \lambda e') \leq \lambda \text{CF}(e) + (1 - \lambda) \text{CF}(e') \]

- **choice**
 \[\text{CF}(e \& e') = \max\{\text{CF}(e), \text{CF}(e')\} \]
 \[\text{NCF}(e \& e') = \min\{\text{NCF}(e), \text{NCF}(e')\} \]

- **tensor**
 \[\text{CF}(e_1 \otimes e_2) = \]
 \[\text{CF}(e_1) + \text{CF}(e_2) - \text{CF}(e_1)\text{CF}(e_2) \]
 \[\text{NCF}(e_1 \otimes e_2) = \text{NCF}(e_1)\text{NCF}(e_2) \]
Further directions

- Alternative measures: e.g. Negative Probabilities
Further directions

- Alternative measures: e.g. Negative Probabilities
- Signalling models
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling

\[e_{\text{NS}} = \lambda e_{\text{NS}} - (1 - \lambda) e_{\text{SS}} \]

- Analysis of real data:

 \[e_{\text{Delft}} \approx 0.0664 e_{\text{SS}} + 0.4073 e_{\text{SC}} + 0.5263 e_{\text{NC}} \]

 \[e_{\text{NIST}} \approx 0.0000049 e_{\text{SS}} + 0.0000281 e_{\text{SC}} + 0.9999670 e_{\text{NC}} \]

- First extract NS fraction, then NC fraction? Or vice-versa?

- Non-uniqueness of witnesses!

- Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter

- Resource Theory

- Sequencing. . .

- What is this resource useful for?
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?

- Similarly, a no-signalling fraction:
 \[e = \lambda e_{NS} - (1 - \lambda) e_{SS} \]

- Analysis of real data:
 \[e_{Delft} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC} \]
 \[e_{NIST} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC} \]

- First extract NS fraction, then NC fraction? Or vice-versa? Also:
 - non-uniqueness of witnesses!

- Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter

- Resource Theory

- Sequencing...
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?
 - Similarly, a no-signalling fraction: \(e = \lambda e^{NS} - (1 - \lambda) e^{SS} \)

- Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter
- Resource Theory
- Sequencing...
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?
 - Similarly, a no-signalling fraction: \(e = \lambda e^{NS} - (1 - \lambda) e^{SS} \)
 - Analysis of real data:
 \[
 e_{\text{Delft}} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC} \\
 e_{\text{NIST}} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC}
 \]
Further directions

• Alternative measures: e.g. Negative Probabilities

• Signalling models
 • Empirical data will not always satisfy no-signalling
 • Quantify amount of no-signalling and contextuality?
 • Similarly, a no-signalling fraction: \(e = \lambda e^{NS} - (1 - \lambda) e^{SS} \)
 • Analysis of real data:
 \[
 e_{\text{Delft}} \approx 0.0664e_{SS} + 0.4073e_{SC} + 0.5263e_{NC} \\
 e_{\text{NIST}} \approx 0.0000049e_{SS} + 0.0000281e_{SC} + 0.9999670e_{NC}
 \]
 • First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?
 - Similarly, a no-signalling fraction: \(e = \lambda e^{NS} - (1 - \lambda) e^{SS} \)
 - Analysis of real data:
 \[
 e_{\text{Delft}} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC}
 \]
 \[
 e_{\text{NIST}} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC}
 \]
 - First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!
 - Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter

- Resource Theory
- Sequencing...
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?
 - Similarly, a no-signalling fraction: \(e = \lambda e^{NS} - (1 - \lambda) e^{SS} \)
 - Analysis of real data:
 \[
 e_{\text{Delft}} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC} \\
 e_{\text{NIST}} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC}
 \]
 - First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!
 - Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter

- Resource Theory
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?
 - Similarly, a no-signalling fraction: \(e = \lambda e^\text{NS} - (1 - \lambda) e^\text{SS} \)
 - Analysis of real data:
 \[
 \begin{align*}
 e_{\text{Delft}} & \approx 0.0664 e_{\text{SS}} + 0.4073 e_{\text{SC}} + 0.5263 e_{\text{NC}} \\
 e_{\text{NIST}} & \approx 0.0000049 e_{\text{SS}} + 0.0000281 e_{\text{SC}} + 0.9999670 e_{\text{NC}}
 \end{align*}
 \]
 - First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!
 - Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter

- Resource Theory
 - Sequencing...
Further directions

- Alternative measures: e.g. Negative Probabilities

- Signalling models
 - Empirical data will not always satisfy no-signalling
 - Quantify amount of no-signalling and contextuality?
 - Similarly, a no-signalling fraction: \(e = \lambda e^{NS} - (1 - \lambda) e^{SS} \)
 - Analysis of real data:
 \[
 e_{Delft} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC}
 \]
 \[
 e_{NIST} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC}
 \]
 - First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!
 - Connections with Contextuality-by-Default (Dzhafarov et al.) and Markham & Winter

- Resource Theory
 - Sequencing...
 - What is this resource useful for?
Conclusion

Introducing a measure of contextuality... the Contextual Fraction

- Fully general: applicable to any measurement scenario
- Normalised: allowing comparison across scenarios
- 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to *violations of Bell inequalities*
- Computational tools (*Mathematica* package) implementing all this
- **Resource Theory**: Monotonicity properties wrt operations that don’t introduce contextuality
Questions...